Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543095

RESUMO

This study aimed to explore the mechanisms through which salvianolic acid B (Sal-B) exerts its effects during myocardial ischemia-reperfusion injury (MI/RI), aiming to demonstrate the potential pharmacological characteristics of Sal-B in the management of coronary heart disease. First, Sal-B-related targets and MI/RI-related genes were compiled from public databases. Subsequent functional enrichment analyses using the protein-protein interaction (PPI) network, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted the core targets and approaches by which Sal-B counters MI/RI. Second, a Sal-B-treated MI/RI mouse model and oxygen-glucose deprivation/reoxygenation (OGD/R) H9C2 cell model were selected to verify the main targets of the network pharmacological prediction. An intersectional analysis between Sal-B and MI/RI targets identified 69 common targets, with a PPI network analysis highlighting caspase-3, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) as central targets. GO and KEGG enrichment analyses indicated remarkable enrichment of the apoptosis pathway among these targets, suggesting their utility in experimental studies in vivo. Experimental results demonstrated that Sal-B treatment not only mitigated myocardial infarction size following MI/RI injury in mice but also modulated the expression of key apoptotic regulators, including Bcl-2-Associated X (Bax), caspase-3, JNK, and p38, alongside enhancing the B-cell lymphoma-2 (Bcl-2) expression, thereby inhibiting myocardial tissue apoptosis. This study leveraged an integrative network pharmacology approach to predict Sal-B's potential targets in MI/RI treatment and verified the involvement of key target proteins within the predicted signaling pathways through both in vivo and in vitro experiments, offering a comprehensive insight into Sal-B's pharmacological mechanism in MI/RI management.

2.
Heliyon ; 10(3): e24908, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333845

RESUMO

The consumption of a high-cholesterol diet is known to cause hyperlipidemia, which is one of the main risk factors for cardiovascular disease. Protocatechualdehyde (PCA) and hydroxysafflor yellow A (HSYA) are the active components of Salvia miltiorrhiza and safflower, respectively. However, their exact mechanism is still unclear. The aim of this study is to investigate its effects on lipid deposition and liver damage in hyperlipidemic zebrafish and its mechanism of anti-hyperlipidemia. The results showed that the use of PCA and HSYA alone and in combination can improve lipid deposition, slow behavior, abnormal blood flow and liver tissue damage, and the combined use is more effective. Further RT-qPCR results showed that PCA + HSYA can regulate the mRNA levels of PPAR-γ, SREBP2, SREBP1, HMGCR, PCSK9, mTOR, C/EBPα, LDLR, AMPK, HNF-1α and FoxO3a. The PCA + HSYA significantly improves lipid deposition and abnormal liver function in hyperlipidemic zebrafish larvae, which may be related to the AMPK/SREBP2/PCSK9/LDLR signaling pathway.

3.
Arch Microbiol ; 206(2): 67, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236396

RESUMO

Antibiotics are commonly used in clinical practice to treat bacterial infections. Due to the abuse of antibiotics, the emergence of drug-resistant strains, such as cefotaxime sodium-resistant Escherichia coli (CSR-EC), has aggravated the treatment of diseases caused by bacterial infections in the clinic. Therefore, discovering new drug candidates with unique mechanisms of action is imperative. Chlorogenic acid (CGA) is an active component of Yinhua Pinggan Granule, which has antioxidant and anti-inflammatory effects. We chose the CGA to explore its effects on PANoptosis in cultured macrophages infected with CSR-EC. In this study, we explored the protective impact of CGA on macrophage cell damage generated by CSR-EC infection and the potential molecular mechanistic consequences of post-infection therapy with CGA on the PANoptosis pathway. Our findings demonstrated that during CSR-EC-induced macrophage infection, CGA dramatically increased cell survival. CGA can inhibit pro-inflammatory cytokine expression of IL-1ß, IL-18, TNF-α, and IL-6. CGA decreased ROS generation and increased Nrf-2 expression at the gene and protein levels to lessen the cell damage and death brought on by CSR-EC infection. Additionally, we discovered that the proteins Caspase-3, Caspase-7, Caspase-8, Caspase-1, GSDMD, NLRP-3, RIPK-3, and MLKL were all inhibited by CGA. In summary, our research suggests that CGA is a contender for reducing lesions brought on by CSR-EC infections and that it can work in concert with antibiotics to treat CSR-EC infections clinically. However, further research on its mechanism of action is still needed.


Assuntos
Infecções Bacterianas , Cefotaxima , Humanos , Cefotaxima/farmacologia , Ácido Clorogênico/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Macrófagos
4.
Neuroscience ; 537: 1-11, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38036060

RESUMO

Cerebral ischemia (CI) is the main cause of stroke morbidity and disability. This study aims to identify the early molecular regulation responsible for the therapeutic effectiveness of the Herb pair Danshen-Honghua (DH) for CI. The major targets of DH were identified by searching the public database of traditional Chinese medicine (TCM). In addition, GeneCards, Disgenet, and GeneMap databases in OMIM were used to determine the disease targets of CI. A total of 88 common targets of DH and CI were selected, a protein-protein interaction (PPI) network was established by Cytoscape, and 19 core targets were screened. These genes were primarily enriched in biological processes including wound healing, reaction to oxidative stress, and response to peptides, lipid and atherosclerosis, Age-rage signaling pathway, and TNF signaling pathway by KEGG and GO enrichments. The effective components of DH had stable binding to these key targets by molecular docking. Finally, it was verified that the mechanism of DH on CI treatment may be related to the activation of the TNF-α/JNK signaling pathway by establishing the middle cerebral artery occlusion (MCAO) rat model.


Assuntos
Carthamus tinctorius , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Salvia miltiorrhiza , Animais , Ratos , Simulação de Acoplamento Molecular , Infarto Cerebral , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
5.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067558

RESUMO

Hydroxysafflor yellow A (HSYA) is derived from Carthamus tinctorius L. (Honghua in Chinese) and is used to treat cardiovascular and cerebrovascular disease. However, the mechanism by which HSYA treats ischemic stroke following atherosclerosis (ISFA) remains unclear. The targets and pathways of HSYA against ISFA were obtained using network analysis. A total of 3335 potential IFSA-related targets were predicted using the GenCards and Drugbank databases, and a total of 88 potential HSYA-related targets were predicted using the Swiss Target Prediction database. A total of 62 HSYA-related targets against IFSA were obtained. The network was composed of HSYA, 62 targets, and 20 pathways. The top 20 targets were constructed via the protein-protein interaction (PPI) network. Gene Ontology analysis revealed that the targets were involved in signal transduction, protein phosphorylation, the cytoplasm, the plasma membrane, the cytosol, zinc ion binding, ATP binding, protein kinase binding/activity, and enzyme binding. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the pathways were associated with cancer, inflammatory mediator regulation of the transient receptor potential channels, and microRNA in cancer. Additionally, molecular docking indicated that HSYA mainly interacts with five targets, namely interleukin 1 beta (IL-1ß), signal transducer and activator of transcription 3 (STAT3), E1A-binding protein p300 (EP300), protein kinase C alpha (PRKCA), and inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB). In animal experiments, HSYA administration ameliorated the infarct size, neurological deficit score, histopathological changes, carotid intima-media thickness (IMT), and blood lipid level (total cholesterol and triglycerides). Immunochemistry and quantitative PCR showed that HSYA intervention downregulated the expression of STAT3, EP300, PRKCA, and IKBKB, and the enzyme-linked immunoassay showed reduced IL-1ß levels. The findings of this study provide a reference for the development of anti-ISFA drugs.


Assuntos
Aterosclerose , Chalcona , AVC Isquêmico , Neoplasias , Animais , Quinase I-kappa B , AVC Isquêmico/tratamento farmacológico , Espessura Intima-Media Carotídea , Simulação de Acoplamento Molecular , Chalcona/farmacologia , Chalcona/uso terapêutico , Aterosclerose/tratamento farmacológico , Neoplasias/tratamento farmacológico
6.
Heliyon ; 9(11): e21871, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027639

RESUMO

Yinhuapinggan granule (YHPG) is a traditional Chinese medicine prescription with rich clinical experience for the treatment of colds and coughs. The aim of this study is to investigate the protective effect of YHPG on multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infection in vivo and its potential anti-inflammatory mechanism. BALB/c mice were intranasally inoculated with MDR A. baumannii strain to establish the pneumonia infection model, and received intraperitoneally cyclophosphamide to form immunosuppression before attack. YHPG (6, 12 and 18 g/kg) was administered by gavage once a day for 3 consecutive days after infection. The protective effect of YHPG was evaluated by lung index, spleen index, thymus index, pathological changes of lung tissue and inflammatory factors (IL-1ß, IL-6 and TNF-α) in serum. The expression of key targets of NF-κB/NLRP3 signaling pathway in vivo was analyzed by immunohistochemistry, immunofluorescence, reverse transcription quantitative PCR (RT-qPCR) and Western blot. The results showed that YHPG improved the lung index and its inhibition rate, immune organ indexes and lung pathological changes in infected mice, and significantly reduced IL-1ß, IL-6 and TNF-α levels in serum. In addition, YHPG significantly down-regulated the mRNA and protein expression of NF-κB p65, NLRP3, ASC, Caspase-1, TNF-α, IL-6 and IL-1ß in mice lung tissue. The results of the current study demonstrated that YHPG has significant protective effects on mice infected with MDR A.baumannii, which may be related to the regulation of inflammatory factors and NF-κB/NLRP3 signaling pathway, indicating that YHPG has a wide range of clinical application value and provides a theoretical basis for its treatment of MDR A.baumannii infection.

7.
Heliyon ; 9(11): e21711, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027853

RESUMO

Ischemic acute kidney injury (AKI) is a prevalent disorder among hospitalized patients worldwide. Astragaloside IV (AS-IV) has been shown to protect against ischemic AKI. However, the specific effects and mechanisms of AS-IV on alleviating kidney ischemia-reperfusion (I/R) injury remain unclear. The objective of this research was to elucidate the regulatory targets and mechanisms through which AS-IV protects kidney I/R injury. A combination of network pharmacology, molecular docking, molecular dynamics (MD) simulation, pharmacodynamic study and Western blot were employed to explore the underlying mechanisms. Network pharmacology revealed that ferroptosis was a potential mechanism of AS-IV against kidney I/R injury. Molecular docking and MD simulations demonstrated strong binding affinity between the GPX4/SLC7A11 and AS-IV. The experimental verification demonstrated that AS-IV improved cell proliferation, decreased the level of ROS and Fe2+, and increased the expressions of GPX4 and SLC7A11 as same as Ferrostatin-1 in OGD/R-injured HUVECs. In conclusion, AS-IV had a significant inhibition on ferroptosis in kidney I/R injury, providing a new perspective for drug development on kidney I/R injury. Definitely, further exploration in vivo is necessary to fully understand whether AS-IV alleviates kidney I/R injury through inhibiting endothelial ferroptosis.

8.
Sci Rep ; 13(1): 17736, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853059

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes severe inflammation in various infectious diseases, such as bloodstream infections, respiratory and urinary tract infections, which leads to high mortality. Polydatin (PD), an active ingredient of Yinhuapinggan granule, has attracted worldwide attention for its powerful antioxidant, anti-inflammatory, antitumor, and antibacterial capacity. However, very little is known about the effect of PD on CRKP. In this research, we evaluated the inhibitory effects of PD on both the bacterial level and the bacterial-cell co-culture level on anti-biofilm and efflux pumps and the other was the inhibitory effect on apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) after CRKP induction. Additionally, we validated the mechanism of action by qRT-PCR and western blot in human lung epithelial cells. Firstly, PD was observed to have an inhibitory effect on the biofilm of CRKP and the efflux pump AcrAB-TolC. Mechanically, CRKP not only inhibited the activation of Nuclear Factor erythroid 2-Related Factor 2 (Nrf-2) but also increased the level of ROS in cells. These results showed that PD could inhibit ROS and activate Nrf-2 production. Together, our research demonstrated that PD inhibited bacterial biofilm formation and efflux pump AcrAB-TolC expression and inhibited CRKP-induced cell damage by regulating ROS and Nrf-2-regulated antioxidant pathways.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos/farmacologia , Klebsiella pneumoniae , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pulmão , Estresse Oxidativo , Células Epiteliais , Biofilmes
9.
J Pharm Anal ; 13(9): 968-983, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37842657

RESUMO

Ischemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.

10.
Brain Res ; 1819: 148532, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586676

RESUMO

Guhong injection (GHI), a compound preparation of Chinese and Western medicine, is composed of safflower water extract and aceglutamide, and has a certain therapeutic effect on cerebral ischemia diseases. In this study, we investigated and compared the protective effects of GHI, Honghua injection (HHI), and aceglutamide (ACG) on cerebral ischemia-reperfusion injury in Sprague-Dawley (SD) rats randomly assigned to the following 5 groups: Sham, MCAO, MCAO + GHI, MCAO + HHI, and MCAO + ACG. The results revealed that GHI, HHI, and ACG improved neurological functions and reduced the infarct volume, the contents of HIF-1α, PKC, and EPO, and the expression of NOX-4 and HIF-1α mRNA. The protein expression of HIF-1α and iNOS treated with GHI, HHI, and ACG was decreased, while that of PHD2 was increased. Meanwhile, the BrdU+/NeuN+ cell counts of SGZ and SVZ areas in the brain tissues of the GHI, HHI, and ACG groups were greater than those of the MCAO rats. Thus, GHI, HHI, and ACG can confer protection against cerebral ischemia-reperfusion injury, possibly through antioxidation. Our research findings may provide evidence for the effectiveness of the combination of traditional Chinese and Western medicine.

11.
Phytomedicine ; 119: 155002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572566

RESUMO

BACKGROUND: Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs). METHODS: In vivo studies, LDLR-/- mice were fed a high-fat diet (HFD) for 14 weeks to establish an AS model to evaluate the protective effect of Sal B on the development of AS. Total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels were determined in the blood serum. En face and cross section lipid deposits were measured and quantified with Oil Red O staining. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to quantify atherosclerotic plaque size and collagen fiber content in aortic root sections. Reactive oxygen species (ROS) were detected in aortic root using dihydroethylenediamine (DHE) staining. Apoptosis rate was determined by TdT-mediated dUTP nick end labeling (TUNEL) staining. Immunofluorescence (IF) staining was used to detect the expression of the nuclear factor kappa-B (NF-κB) p65 and NOD-like receptor family pyrin domain containing 3 (NLRP3). To further investigate the protective effect of Sal B, we used TNF-α induced HUVECs inflammation model. We examined cell viability, lactate dehydrogenase (LDH) content, and ROS production. The transcription of NF-κB was evaluated by immunofluorescence. The mRNA levels of NLRP3, caspase-1, and IL-1ß were detected by RT-PCR. Pyroptosis related proteins were detected by Western blot. RESULTS: The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. IN VIVO STUDIES: we were able to show that the serum lipids TC, TG and LDL-C were increased in the model group and that the treatment with Sal B reduced the levels of serum lipids. Histological staining showed that the LDLR-/- mice had a large amount of foam cell deposition accompanied by inflammatory cell infiltration and the formation of atherosclerotic plaques in theMOD group. The pathological abnormalities were significantly improved by Sal B treatment. ROS release and apoptosis were significantly increased after HFD in aortic root, which was attenuated by Sal B. IF results showed that the expression of NF-κB p65 and NLRP3 was significantly increased in the MOD group and significantly decreased in the Sal B group, suggesting that Sal B may act through the NF-κB/NLRP3 pathway. And in vitro studies: inflammatory damage of HUEVCs was induced by TNF-α, and Sal B treatmented significantly increased cell viability and reduced LDH release. It was also found that Sal B inhibited ROS level increase after TNF-α-induced HUEVCs. Activation of NF-κB p65 by TNF-α stimulation, NF-κB p65 is transferred to the nucleus. Sal B treatment could reverse this effect. RT-PCR and Western blot showed that Sal B affected NF-κB transcription and NLRP3 inflammasome activation and could significantly inhibit TNF-α-induced NLRP3 inflammasome activation. These results suggest that Sal B may participate in antiatherosclerotic and inflammatory responses through the NF-κB/NLRP3 pathway. CONCLUSIONS: This study shows that Sal B ameliorates the development of AS lesions in HFD-induced LDLR-/- mice. Furthermore, under TNF-α conditions, Sal B reduced ROS release and reversed nuclear translocation of NF-κB, and inhibited atherosclerosis and inflammation by modulating the NF-κB/NLRP3 pathway.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , LDL-Colesterol , Transdução de Sinais , Inflamação/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico
12.
J Microbiol Biotechnol ; 33(10): 1281-1291, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37559205

RESUMO

Infectious diseases caused by drug-resistant Escherichia coli (E. coli) pose a critical concern for medical institutions as they can lead to high morbidity and mortality rates. In this study, amygdalin exhibited anti-inflammatory and antioxidant activities, as well as other potentials. However, whether it could influence the drug-resistant E. coli-infected cells remained unanswered. Amygdalin was therefore tested in a cellular model in which human macrophages were exposed to resistant E. coli. Apoptosis was measured by flow cytometry and the lactate dehydrogenase (LDH) assay. Western immunoblotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to quantify interleukin-18 (IL-18), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). The production of reactive oxygen species (ROS) in macrophages was detected by ROS kit. The expression of panapoptotic proteins in macrophages was measured by qRT-PCR and Western immunoblotting. Drug-Resistant E. coli inhibited cell viability and enhanced apoptosis in the cellular model. In cells treated with amygdalin, this compound can inhibit cell apoptosis and reduce the expression of pro - inflammatory cytokines such as IL-1ß, IL-18 and IL-6. Additionally, it decreases the production of PANoptosis proteins, Furthermore, amygdalin lowered the levels of reactive oxygen species induced by drug-resistant E. coli, in cells, demonstrating its antioxidant effects. Amygdalin, a drug with a protective role, alleviated cell damage caused by drug-resistant E. coli in human macrophages by inhibiting the PANoptosis signaling pathway.


Assuntos
Amigdalina , Humanos , Amigdalina/farmacologia , Interleucina-6/genética , Interleucina-18 , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo
13.
J Pharm Biomed Anal ; 233: 115485, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267872

RESUMO

Bupleurum and Paeonia are common compatibilities for the treatment of depression, most of which are used in classical prescriptions. The main active ingredients saikosaponin A (SSA) and paeoniflorin (PF) have significant therapeutic effects on poststroke depression (PSD). However, the pharmacokinetic (PK) behavior based on the combination of the two components has not been reported in rats. The aim of this study was to compare the pharmacokinetic characteristics of combined administration of SSA and PF in normal and PSD rats. Plasma samples were collected after SSA and PF were injected into the rat tail vein, and plasma pretreatments were analyzed by HPLC. Based on the concentration levels of SSA and PF in plasma, Drug and Statistics 3.2.6 (DAS 3.2.6) software was used to establish the blood drug concentration model. PK data showed that compared with the normal rats, the values of related parameters t1/2α, AUC(0-t), AUC(0-∞) were decreased in diseased rats, while the values of CL1 was increased. These findings suggest that PSD can significantly affect the PK parameters of SSA-PF. This study established a PK model to explore the time-effect relationship, in order to provide experimental and theoretical support for clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/farmacocinética , Depressão/tratamento farmacológico , Depressão/etiologia , Monoterpenos/farmacocinética
14.
Rejuvenation Res ; 26(4): 159-169, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261991

RESUMO

Cerebral ischemia-reperfusion (CIR) injury occurs as a secondary injury during the treatment of ischemic stroke (IS). There is a high death rate and morbidity due to IS throughout the world. Even though Naoxintong Capsule (NXT) is effective in the treatment of CIR, its mechanisms of action are unclear. The study aims to explore the clear mechanism associated with NXT therapy for CIR. We established the model of middle cerebral artery occlusion to evaluate the neurological function and assess the infarct size. Brain tissue metabolomics was used to identify different metabolites, and metabolic profiling systems enriched metabolic pathways. Then, the potential targets of NXT in the treatment of CIR were explored by proteomic, transcriptomic, and metabolomic methods. NXT improves CIR symptoms. We found potential 11 proteins and corresponding metabolites involved in NXT treatment of CIR. Most of these metabolites are regulated to restore after treatment. According to network pharmacology, we found 6 hub genes, including Glb1, Gmps, Pfas, Atic, Gaa, and Acox1, and their associated core metabolites and pathways. This study reveals the complex mechanism of NXT in treating CIR, and provides a new strategy for future researchers to screen related targets and pathways.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Humanos , Proteômica , Multiômica , Medicamentos de Ervas Chinesas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética
15.
Phytomedicine ; 115: 154845, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148714

RESUMO

BACKGROUND: As a common cerebrovascular disease (CVD) of the elderly, ischemic stroke (IS) is characterized by high disability and mortality. Excessive autophagy induced by IS is implicated in neuronal death, therefore, the inhibition of immoderate autophagy is viewed as a potential therapeutic avenue to treat IS. Calysoin (CA) is a bioactive component of Radix Astragali, which has been widely used to treat CVDs. However, the mechanism of the treatment of IS by CA is still problematic. PURPOSE: Based on the result of network pharmacology, whether CA inhibited autophagy by regulating the STAT3/FOXO3a pathway to alleviate cerebral ischemia-reperfusion injury (CIRI) was investigated in vivo and in vitro for the first time. STUDY DESIGN: Integrate computational prediction and experimental validation based on network pharmacology. METHODS: In current study, network pharmacology was applied to predict the mechanism of the treatment of IS by CA, and it was shown that CA alleviated CIRI by inhibiting autophagy via STAT3/FOXO3a signaling pathway. One hundred and twenty adult male specific pathogen-free Sprague-Dawley rats in vivo and PC12 cells in vitro were used to verify the above prediction results. The rat middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by suture method, and oxygen glucose deprivation/re-oxygenation (OGD/R) model was used to simulate cerebral ischemia in vivo. The content of MDA, TNF-α, ROS and TGF-ß1 in rat serum were detected by ELISA kits. The mRNA and protein expressions in brain tissue were detected by RT-PCR and Western Blotting. The expressions of LC3 in brain were detected immunofluorescent staining. RESULTS: The experimental results demonstrated that administration of CA dosage-dependently improved rat CIRI as evidenced by the reduction in the cerebral infarct volume, amelioration of the neurological deficits. HE staining and transmission electron microscopy results revealed that CA ameliorated cerebral histopathological damage, abnormal mitochondrial morphology, and damaged mitochondrial cristae structure in MCAO/R rats. CA treatment exerted protective effects in CIRI by inhibiting inflammation response, oxidative stress injury, and cell apoptosis in rat and PC12 cells. CA relieved excessive autophagy induced by MCAO/R or OGD/R through downregulating the LC3Ⅱ/LC3Ⅰ ratio and upregulating the SQSTM1 expression. CA treatment also decreased p-STAT3/STAT3 and p-FOXO3a/FOXO3a ratio in the cytoplasm and modulated the autophagy-related gene expression both in vivo and in vitro. CONCLUSION: Treatment with CA attenuated CIRI by reducing excessive autophagy via STAT3/FOXO3a signal pathway in rat and PC12 cells.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/metabolismo , Autofagia , Apoptose
16.
Biomed Pharmacother ; 163: 114887, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207429

RESUMO

Danhong injection (DHI) is a traditional Chinese medicine injection that promotes blood circulation and removes blood stasis and has been widely used in the treatment of stroke. Many studies have focused on the mechanism of DHI in acute ischemic stroke (IS); however, few studies have thoroughly explored its role during recovery. In this study, we aimed to determine the effect of DHI on long-term neurological function recovery after cerebral ischemia and explored the related mechanisms. Middle cerebral artery occlusion (MCAO) was used to establish an IS model in rats. The efficacy of DHI was assessed using neurological severity scores, behaviors, cerebral infarction volume and histopathology. Immunofluorescence staining was performed to assess hippocampal neurogenesis. An in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was constructed and western-blot analyses were performed to verify the underlying mechanisms. Our results showed that DHI treatment greatly reduced the infarct volume, promoted neurological recovery and reversed brain pathological changes. Furthermore, DHI promoted neurogenesis by increasing the migration and proliferation of neural stem cells, and enhancing synaptic plasticity. Moreover, we found that the pro-neurogenic effects of DHI were related to an increase in brain-derived neurotrophic factor (BDNF) expression and the activation of AKT/CREB, which were attenuated by ANA-12 and LY294002, the inhibitors of the BDNF receptor and PI3K. These results suggest that DHI improves neurological function by enhancing neurogenesis and activating the BDNF/AKT/CREB signaling pathways.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neurogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico
17.
Phytomedicine ; 114: 154814, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062134

RESUMO

INTRODUCTION: Natural deep eutectic solvents (NaDESs) are promising not only in componential extraction, but also in drug delivery system due to their green and safe features. In this work, NaDESs were applied to extract bioactive components from Astragalus-Safflower pair, a classic traditional Chinese medicine combination. Furthermore, ready-to-use crude extracts were administrated to SD rats. METHODS: Total 9 NaDESs composed of food grade ingredients were screened for the extraction of representative 9 components (hydroxysafflor yellow A, anhydrosafflor yellow B, eleutheroside B, calycosin-7-O-glucoside, kaempferol-3-O-rutinoside, ononin, calycosin, astraganoside, and carthamin) from Astragalus-Safflower pair. Afterwards, genetic artificial neural network (GNN) was adopted for optimizing the ultrasound-assisted extraction process. After SD rats were orally administrated with the ready-to-use crude extracts extracted under the optimized conditions, the in vivo pharmacokinetic characteristics of 5 components were evaluated comprehensively from weight, gender, solvent and modeling surgery, under a well-established UPLC-MS/MS method. RESULTS: Betaine-Lactic acid (Bet-Lac) was eventually determined as the optimal extraction solvent for subsequent experiments. The optimal ultrasound assisted extraction process was as follows: 90 min of extraction time, 65 °C of temperature, 80% of Bet-Lac content and 50 mg/ml of solid-liquid ratio. Bet-Lac enhanced to varying degrees the bioavailability of analytes in normal and cerebral ischemia/reperfusion injured (CI/RI) rats in contrast with corresponding rats administrated with water extract groups (p < 0.05). Besides, the bioavailability of active components in CI/RI rat plasma was significantly lower than that in normal rats (p < 0.05), indicating pathological damage of CI/R had a significant impact on pharmacokinetic profile of compounds in rats. However, gender and body weight had no significant effects on the pharmacokinetic profile of bioactive components. CONCLUSIONS: NaDESs exhibited higher extraction efficiency than conventional solvents. And GNN is reliable to optimize the ultrasound assisted extraction process. This study supported the potential of non-toxic NaDESs as solvents for extraction process and drug delivery systems at the same time.


Assuntos
Carthamus tinctorius , Extratos Vegetais , Ratos , Animais , Solventes , Extratos Vegetais/farmacologia , Solventes Eutéticos Profundos , Cromatografia Líquida , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
18.
Food Funct ; 14(8): 3588-3599, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36946308

RESUMO

The herb Astragali Radix is a food-medicine herb. A major component of Astragali Radix, astragaloside IV (AS-IV), has neuroprotective effects in IS, but its mechanisms are not well understood. Our research used a transient middle cerebral artery occlusion (MCAO) rat model for longitudinal multi-omics analyses of the side of the brain affected by ischemia. Based on transcriptomic and proteomic analysis, we found that 396 differential expression targets were up-regulated and 114 differential expression targets were down-regulated. A total of 117 differential metabolites were identified based on metabonomics. Finally, we found 8 hub genes corresponding to the compound-reaction-enzyme-gene network using the Metscape plug-in for Cytoscape 3.7.1. We found that the related key metabolites were 3,4-dihydroxy-L-phenylalanine, 2-aminomuconate semialdehyde, (R)-3-hydroxybutanoate, etc., and the affected pathways were tyrosine metabolism, tryptophan metabolism, butanoate metabolism, purine metabolism, etc. We further validated these targets using 4D-PRM proteomics and found that seven targets were significantly different, including Aprt, Atic, Gaa, Galk1, Glb1, Me2, and Hexa. We aimed to uncover the mechanism of AS-IV in the treatment of ischemic brain injury through a comprehensive strategy combining transcriptomics, proteomics, and metabolomics.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Medicamentos de Ervas Chinesas , Ratos , Animais , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Transcriptoma , Proteômica , Infarto da Artéria Cerebral Média , Metabolômica , Biomarcadores
19.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768450

RESUMO

Promotion of angiogenesis and restoration of the blood flow in the ischemic penumbra is an effective treatment for patients with ischemic stroke (IS). Radix astragali-safflower (AS), a classic herbal pair for accelerating blood circulation and dispersing blood stasis, has been used for thousands of years to treat patients with IS in China. Even so, the mechanism of the treatment of IS by AS is still undecipherable. In the current study, network pharmacology was firstly employed to unveil the mechanism of AS in treating IS, which showed that AS might promote angiogenesis associated with PTGS2 silence. Middle cerebral artery occlusion/reperfusion (MCAO/R) model rats were then used as the experimental animals to verify the prediction result. The experimental results revealed that treatment with AS improved the cerebral infarct volume, neurological damage, and cerebral histopathological damage; inhibited cell apoptosis; increased the contents of PDGF-BB, EPO, and TGF-ß1; and reduced the levels of PF4, Ang-2, and TIMP-1 in serum. Immunohistochemical staining demonstrated that the expression of PTGS2 was dramatically increased in the hippocampus and cerebral cortex of rats with MCAO/R, and this trend was reversed by the treatment of AS. Immunofluorescent staining expressed that AS reversed the down-regulation of VEGF and further promoted the expression of CD31, which indicated that AS promoted angiogenesis in MCAO/R rats. The abnormal protein or mRNA expression of PTGS2, PGI2, bFGF, TSP-1, and VEGF in the penumbra were transposed by AS or Celecoxib (an inhibitor of PTGS2). In conclusion, the protective mechanism of AS for IS promoted angiogenesis and was involved with PTGS2 silence.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Carthamus tinctorius , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Ciclo-Oxigenase 2/genética , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
20.
BMC Pharmacol Toxicol ; 24(1): 5, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717837

RESUMO

Glycyrrhetinic acid (GA) is a bio-effective component of Licorice. The GA is a monomer and the ingredient is an Oleanane-type pentacyclic triterpenes that has been used as a remedy for years. Due to the abuse of antibiotics, people pay attention to the emergence of Multidrug-resistant Acinetobacter baumannii (MDR-AB). As a conditional pathogen, MDR-AB causes severe infection, endangering human lives. Our previous studies found GA played an important role in Yinhua Pinggan, a Chinese medicine. However, whether GA could protect lung epithelium from MDR-AB-induced cell injury was elusive. Herein, we investigated the effects of GA on MDR-AB-infected A549 cells. The results showed GA had slightly antibacterial activity to MDR-AB in the GA (high concentration) but no impact on drug resistance genes. Notwithstanding, GA could reverse MDR-AB-induced cell apoptosis, hampered adhesion and invasion of MDR-AB to cells, and inhibit pro-inflammatory cytokines expression of IL-1ß, IL-6, and TNF. Besides, MDR-AB-induced reactive oxygen species, pro-oxidative protein malonaldehyde, and myeloperoxidase of cells were decreased by GA, while antioxidative proteins were recovered, showing antioxidative capacity of GA might play a critical role. The expressions of toll-like receptor (TLRs) - 1, 2, 4, 5, 6, and 9 were increased by MDR-AB infection, while GA reversed the tendency. Interestingly, GA inhibited MDR-AB induced myeloiddifferentiationfactor88 expression (MYD88), one downstream con-factors of TLRs, but no affection on Interferon regulatory Factor 3 (IRF3), the other one, indicating GA inhibited MDR-AB induced cell injury by impact TLR/MYD88 pathway to attenuate inflammation. Altogether, our results demonstrated that GA protects against MDR-AB-induced cell injury through its antioxidative and anti-inflammatory properties, which deserve further study in the future.


Assuntos
Acinetobacter baumannii , Ácido Glicirretínico , Humanos , Ácido Glicirretínico/farmacologia , Fator 88 de Diferenciação Mieloide , Antibacterianos/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão , Células Epiteliais , Estresse Oxidativo , Farmacorresistência Bacteriana Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...